

Learning to find good correspondences

K.M. Yi, E. Trulls, Y. Ono, V. Lepetit, M. Salzmann, P. Fua

Matching with keypoints

(c) Retrieve pose

(a) Find putative matches

(b) Find inliers (e.g. RANSAC)

Fischler & Bolles, "Random Sample Consensus". Comm. ACM, 1981

Dense matching with CNNs

- Current focus of research:
 - ❖ Zamir et al, ECCV'16.
 - ❖ SfM-Net, arxiv'17.
 - ❖ DeMoN, CVPR'17.
 - ♣ Lowe et al, CVPR'17.
- Focus: video, small displacements.

Where's the challenge?

RANSAC: not always enough

Geometry to the rescue

Geometry to the rescue

Computing the Essential matrix

Closed form solution: 8-point algorithm

N correspondences

Longuet-Higgins, "A computer algorithm for reconstructing a scene from two projections". Nature, 1981.

Learning to compute weights

We learn to compute weights for the 8-point algorithm

Learning to compute weights

We learn to compute weights for the 8-point algorithm

N correspondences

Learning to compute weights

We learn to compute weights for the 8-point algorithm

Adding a classification loss

We can build labels from epipolar geometry

Hartley & Zisserman, "Multiple view geometry in computer vision", 2000.

Adding a classification loss

We can build labels from epipolar geometry

Hartley & Zisserman, "Multiple view geometry in computer vision", 2000.

Complete formulation

 We jointly train for outlier rejection and regression to the Essential matrix by minimizing the hybrid loss:

$$\mathcal{L}(\Phi) = \sum_{k=1}^{P} (\alpha \mathcal{L}_x(\Phi, \mathbf{x}_k) + \beta \mathcal{L}_e(\Phi, \mathbf{x}_k))$$

$$= \sum_{k=1}^{P} (\alpha \mathcal{L}_x(\Phi, \mathbf{x}_k) + \beta \mathcal{L}_e(\Phi, \mathbf{x}_k))$$
Classification (which inliers help us retrieve E?)

• For optimal performance, we first minimize the classification loss alone, and then the weighted sum of the two losses.

Unordered data

Classification Network

Our network

- Input: putative matches (SIFT+NN). Coordinates only: $\{u,v,u',v'\}^{1\leq i\leq N}$
- Output: Weights, encoding inlier probability.
- Network: MLPs. Global context embedded via Context Normalization.

Embedding context

- Non-parametric normalization of the mean/std of feature maps.
- Applied over each image pair in the batch separately.
- Also known as Instance Norm, used in image stylization.

Training data

We need **only** the camera poses!

Indoors Outdoors

Ablation test: hybrid loss

We build cumulative curves thresholding over the error in the estimated pose. Metric: **mAP**, up to a certain angle (5°, 10°, 20°).

The **classification** loss works, but the **hybrid loss** does best. Larger margin at smaller thresholds!

Ablation test: Context Norm

We build cumulative curves thresholding over the error in the estimated pose. Metric: **mAP**, up to a certain angle (5°, 10°, 20°).

Context Normalization outperforms global features (PointNet).

Results

Train on only **two sequences:** one indoors & one outdoors (10k pairs from each):

(ii) Brown (video, 8k images)

Test on **completely different** sequences (1k pairs from each):

Results

Outdoors: great performance. Indoors: slightly better than dense methods.

RANSAC for inference

- At test time, we do not require differentiability. We can apply RANSAC!
- Our pipeline:
 - 1. Forward matches through the network.
 - 2. Threshold weights to filter them (~15% inliers).
 - 3. Run RANSAC (~67% inliers).
- 17x times faster than standalone RANSAC! And ~2x better.

Collaborators

Kwang Yi (U. Victoria)

Eduard Trulls (EPFL)

Yuki Ono (Sony)

Mathieu Salzmann (EPFL)

Vincent Lepetit (U. Bordeaux)

Pascal Fua (EPFL)

Code and models: github.com/vcg-uvic/learned-correspondence-release

Please visit the poster!