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Learning to find good correspondences
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Matching with keypoints
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(c) Retrieve pose
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(a) Find putative matches (b) Find inliers (e.g. RANSAC)

Fischler & Bolles, “Random Sample Consensus”. Comm. ACM, 1981



Dense matching with CNNs

e Current focus of research:
<+ Zamir et al, ECCV’16.
<+ SfM-Net, arxiv’17.
<+ DeMoN, CVPR’17.
<+ Lowe et al, CVPR’17.

e Focus: video, small displacements.

« General case (wide baselines) remains unsolved.



Where's the challenge?
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Geometry to the rescue




Geometry to the rescue

™

i

A geometrically-aware deep network.
® Input: correspondences.
e Output: one weight for each.

We simultaneously learn to:
® Perform outlier rejection.
® Regress to the essential matrix.
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Computing the Essential matrix

Closed form solution: 8-point algorithm

Nx9 matrix

/ /
o0 o W 9x9 matrix

Essential

T
X' X Matrix

N correspondences

Longuet-Higgins, "A computer algorithm for reconstructing a scene from two projections”. Nature, 1981.



Learning to compute weights

We learn to compute weights for the 8-point algorithm

Nx9 matrix
{uu', wo’,u, ..} 9x9 matrix
>
Nx1 weights

Deep Net

N correspondences



L earning to compute weights

We learn to compute weights for the 8-point algorithm

Nx9 matrix

{wd!, w'u, ) 9x9 matrix

X

Fully differentiable! Nx1 weights

— <~ Net

N correspondences



L earning to compute weights

Deep Net

N correspondences



Adding a classitication loss

e

We can buiI labels from epipolar geometry

Hartley & Zisserman, “Multiple view geometry in computer vision”, 2000.



Adding a classification loss
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Not perfect (paint « ling)! But good enough
as an additional supervision signal.

d

Hartley & Zisserman, “Multiple view geometry in computer vision”, 2000.



Complete tormulation

 We jointly train for outlier rejection and regression to the Essential matrix
by minimizing the hybrid loss:

P
L(P) =Y (aLy(®,x5) + BL (P, X))
k=1 Classification Regression
(Inliers vs outliers) (which inliers help us
retrieve E?)

» For optimal performance, we first minimize the classification loss alone,
and then the weighted sum of the two losses.



Unordered data
Classification Network

input mlp (64,64) feature mlp (64,128,1024)
*2 transform > - transform > -
5' en N i 1 < NS i V
?; ~Hme " & sha!red % T o= sha!red nx1024 rare 3 Ej
2 : . i global feature
o : —>f_|_|—’ o —"_I_l—' i |£|
: G e output scores
L s naaas ate T point features ...................................
_ > §
— > °
n|x 1088 L W & g |2
shared '5 shared = B
(=7
S r—l—»—~ —»l_l_l—- E
= p (512,256,128) mlp (128,m)

Segmentation Network

L Qi et al. “PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation”. CVPR, 2017



Our network
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+ Input: putative matches (SIFT+NN). Coordinates only: {u, v, u/,v'}'='=N

e Output: Weights, encoding inlier probability.
* Network: MLPs. Global context embedded via Context Normalization.



Embedding context

BTV CONTEXT NORM

* Non-parametric normalization of

the mean/std of feature maps. 1
* Applied over each image pair in ?
the batch separately. S
£
 Also known as Instance Norm,
used in image stylization.
\ 4

<>

Coords: {u, v, v, v/ }1==N



Training data

We need only the camera poses!

Indoors



Ablation test: hybrid loss

We build cumulative curves thresholding over the error in the estimated pose.
Metric: mAP, up to a certain angle (5°, 10°, 20°).

Error threshold: 5° Error threshold: 10° Error threshold: 20°

Regression
via 8pt

The classification loss works, but the hybrid loss does best.
Larger margin at smaller thresholds!



Ablation test: Context Norm

We build cumulative curves thresholding over the error in the estimated pose.
Metric: mAP, up to a certain angle (5°, 10°, 20°).

0.6-
& 0.4-
=

0.2+

0.0

Ours w/o CN

Error threshold: 5°

Error threshold: 10° Error threshold: 20°

Context Normalization outperforms global features (PointNet).



Results

Train on only two sequences: one indoors & one outdoors (10k pairs from each):

/id




Results

0.6 Generalization results. Subset: "Outdoors" m
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Generalization results. Subset: "Indoors"
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Outdoors: great performance. Indoors: slightly better than dense methods.



RANSAC for inference

At test time, we do not require differentiability. We can apply RANSAC!

* Our pipeline:
1. Forward matches through the network.
2. Threshold weights to filter them (~15% inliers).
3. Run RANSAC (~67% inliers).

e 17x times faster than standalone RANSAC! And ~2x better.



PRI~ a8 RANSAC (SIFT, 2000 keypoints)
N
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Collaborators

Kwang Yi Eduard Trulls Yuki Ono Mathieu Salzmann Vincent Lepetit Pascal Fua

(U. Victoria) (EPFL) (Sony) (EPFL) (U. Bordeaux) (EPFL)

Code and models: github.com/vcg-uvic/learned-correspondence-release

Please visit the poster!



