

LIFT: Learned Invariant Feature Transform

Kwang Moo Yi^{*,1)}, Eduard Trulls^{*,1)}, Vincent Lepetit²⁾, and Pascal Fua¹⁾ ¹⁾ École Polytechnique Fédérale de Lausanne ²⁾ Graz University of Technology (* Equal contribution) kwang.yi@epfl.ch, eduard.trulls@epfl.ch, lepetit@icg.tugraz.at, pascal.fua@epfl.ch

Motivation & Contributions

- We propose an integrated, fully-differentiable deep network, for keypoint detection, orientation estimation and feature description.
- Joint optimization improves overall performance.
- Outperforms the state-of-the-art on multiple datasets.
- Provides an off-the-shelf replacement for SIFT, with a practical computational time: 1.5x-3x that of SIFT.
- Code is available: https://github.com/cvlab-epfl/LIFT

Integrated LIFT Network

- **DET, ORI, DESC:** Based on state-of-the-art deep networks.
- **Differentiable "Glue":** Spatial Transformers & softargmax.

Training with Patches

- Train with **patches** to make the problem tractable and scalable.
- Two SfM datasets: Piccadilly ('pic') and Roman Forum ('rf').
- Keep only SfM points, i.e. we learn to find repeatable points.

Piccadilly

Roman Forum

Quadruplet Siamese Network

- Training patches on SIFT locations, perturbed to avoid biases.
- Quadruplet: training the full pipeline requires non-keypoints, matching keypoints, and non-matching keypoints.

Run-time Pipeline

Detector runs in **scale-space with Non-Maximum Suppression.** The Orientation Estimator and Descriptor only process keypoints.

Joint Optimization

- **Descriptor performance**, in terms of NN mAP.
- LIFT descriptor works best

A Single Cost Function

We can optimize jointly with a single global loss:

with LIFT keypoints.

Joint optimization is key.

Evaluation

- Datasets: 'Strecha', 'DTU', 'Webcam'.
 - 'Strecha': wide-baseline stereo (urban scenes).
 - 'DTU': viewpoint changes (objects).
 - Webcam': natural illumination changes, same viewpoint (outdoor).
- Metric: Matching score to capture full-pipeline performance.
 - The ratio of correct matches recovered in the shared viewpoint region.
- Results: best performance on all datasets, with 'rf' and 'pic'.

Spatial Transformers (Rot/Crop) are used as differentiable tools for image transformations. Note that these modules are not trained.

SIFT (still #3 overall)

