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Motivation & Contributions
•  We propose an integrated, fully-differentiable deep network, 

for keypoint detection, orientation estimation and feature 
description.

•  Joint optimization improves overall performance.
•  Outperforms the state-of-the-art on multiple datasets.
•  Provides an off-the-shelf replacement for SIFT, with a practical 

computational time: 1.5x-3x that of SIFT.
•  Code is available: https://github.com/cvlab-epfl/LIFT

Integrated LIFT Network

•  DET, ORI, DESC: Based on state-of-the-art deep networks.
•  Differentiable “Glue”: Spatial Transformers & softargmax.

Quadruplet Siamese Network
•  Training patches on SIFT locations, perturbed to avoid biases.
•  Quadruplet: training the full pipeline requires non-keypoints, 

matching keypoints, and non-matching keypoints.

Run-time Pipeline
Detector runs in scale-space with Non-Maximum Suppression. 
The Orientation Estimator and Descriptor only process keypoints.
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Evaluation
•  Datasets: ‘Strecha’, ‘DTU’, ‘Webcam’.

•  ‘Strecha’: wide-baseline stereo (urban scenes).
•  ‘DTU’: viewpoint changes (objects).
•  ‘Webcam’: natural illumination changes, same viewpoint (outdoor).

•  Metric: Matching score to capture full-pipeline performance.
•  The ratio of correct matches recovered in the shared viewpoint region.

•  Results: best performance on all datasets, with ‘rf’ and ‘pic’.
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•  Descriptor performance, 
in terms of NN mAP.

•  LIFT descriptor works best 
with LIFT keypoints.

•  Joint optimization is key.

A Single Cost Function
We can optimize jointly with a single global loss:

min
{fµ,g�,h⇢}

Lclass(P
1,P2,P3,P4) + �Lpairwise(P

1,P2,P3)

4X

i=1

↵i max

�
0,
�
1� softmax

�
fµ

�
Pi

��
yi
��2

�����
h⇢

�
G
�
P1, softargmax

�
fµ
�
P1
����

�
h⇢

�
G
�
P2, softargmax

�
fµ
�
P2
����

�����
2

+max

 
0, C �

�����
h⇢

�
G
�
P1, softargmax

�
fµ
�
P1
����

�
h⇢

�
G
�
P3, softargmax

�
fµ
�
P3
����

�����
2

!

G (P,x) = Rot (P,x, g� (Crop (P,x)))

orientation
descriptor

detector

detector

detector

detector

orientation

descriptor

descriptor

Spatial Transformers (Rot/Crop) are used as differentiable tools for 
image transformations. Note that these modules are not trained.	  

Training with Patches
•  Train with patches to make the problem tractable and scalable.
•  Two SfM datasets: Piccadilly (‘pic’) and Roman Forum (‘rf’).
•  Keep only SfM points, i.e. we learn to find repeatable points.
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LEARNINGDET:
24σ x 24σ 

128x128 pix

ORI/DESC:
12σ x 12σ 
64x64 pix


