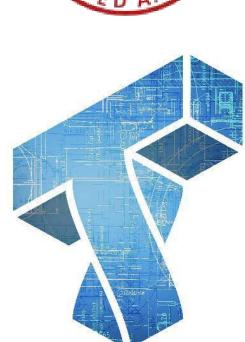


Cornell University Department of Computer Science



¹ Department of Computer Science, Cornell University

Motivation

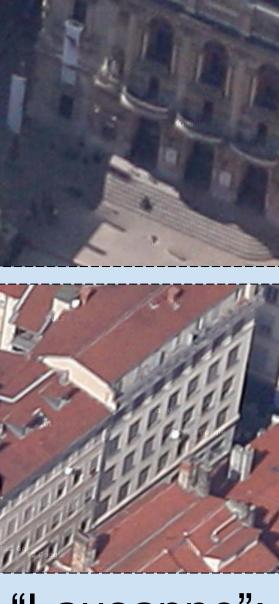
- Matching ultra wide-baseline aerial images goes beyond the reach of traditional tools such as SIFT+RANSAC.
- We approach it with deep networks in a classification framework, and obtain state of the art results.
- However: can we put geometry back into the mix?

Contributions

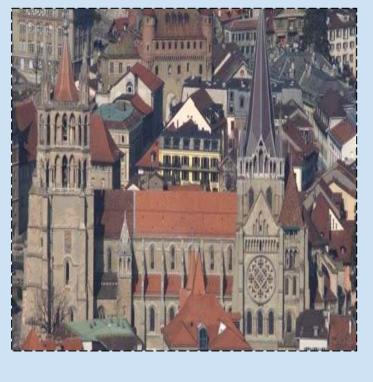
- 1. We demonstrate that deep learning offers a solution for ultra-wide baseline matching.
- 2. We propose a model that relies on spatial transformers to produce patch matching proposals. We show that incorporating geometry increases performance.
- 3. We conduct a **human study** as a baseline.

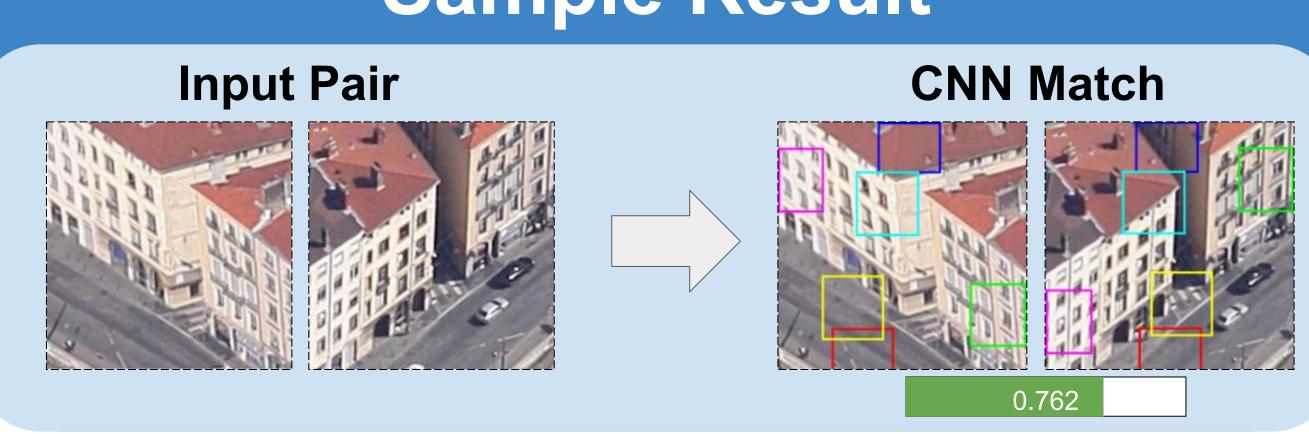
Aerial datasets

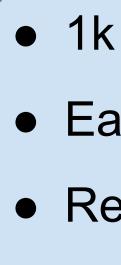
• "GMaps": Ultra-wide 49k pairs from Google Maps, 3 cities.



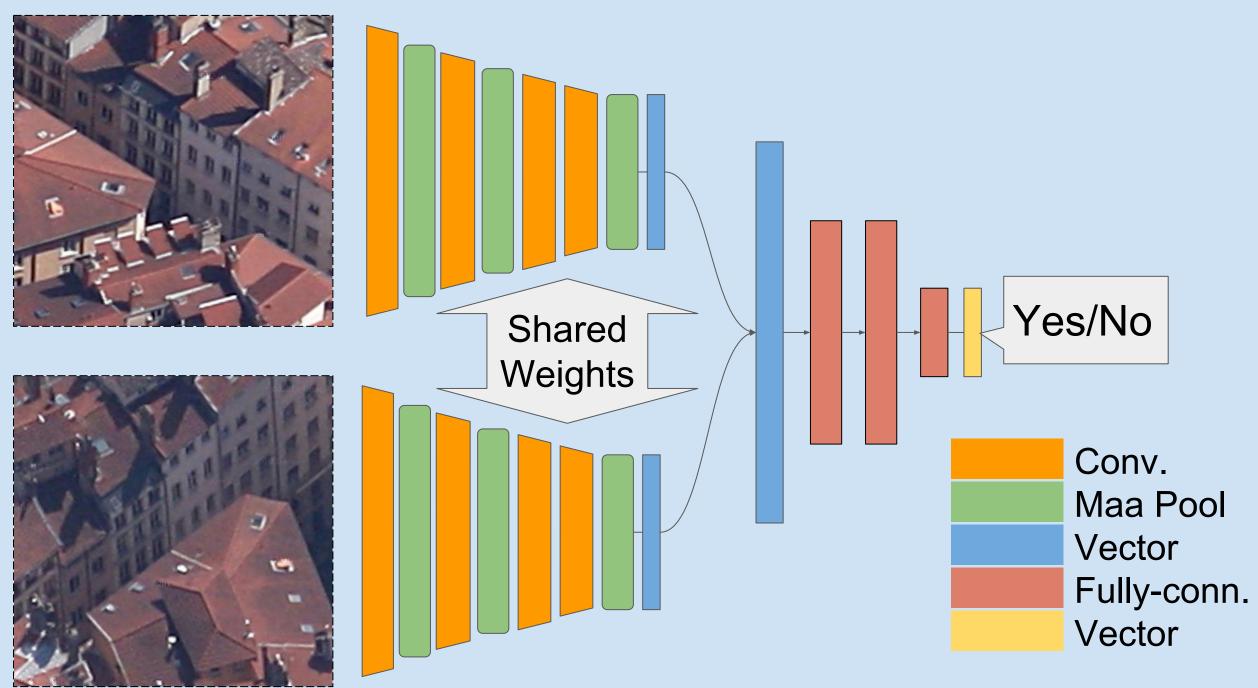
"Lausanne": Wide-baseline 10k pairs from SfM:











Learning to Match Aerial Images with Deep Attentive Architectures

Hani Altwaijry^{1,2}

Eduard Trulls³

² Cornell Tech ³ Computer Vision Laboratory, École Polytechnique Fédérale de Lausanne (EPFL)

Sample Result

Human Performance

• 1k pairs from the "GMaps" set. Task: Yes/No matching. • Each pair was shown to 5 participants. • Results: 93.3% accuracy, 98% precision.

False-Positive

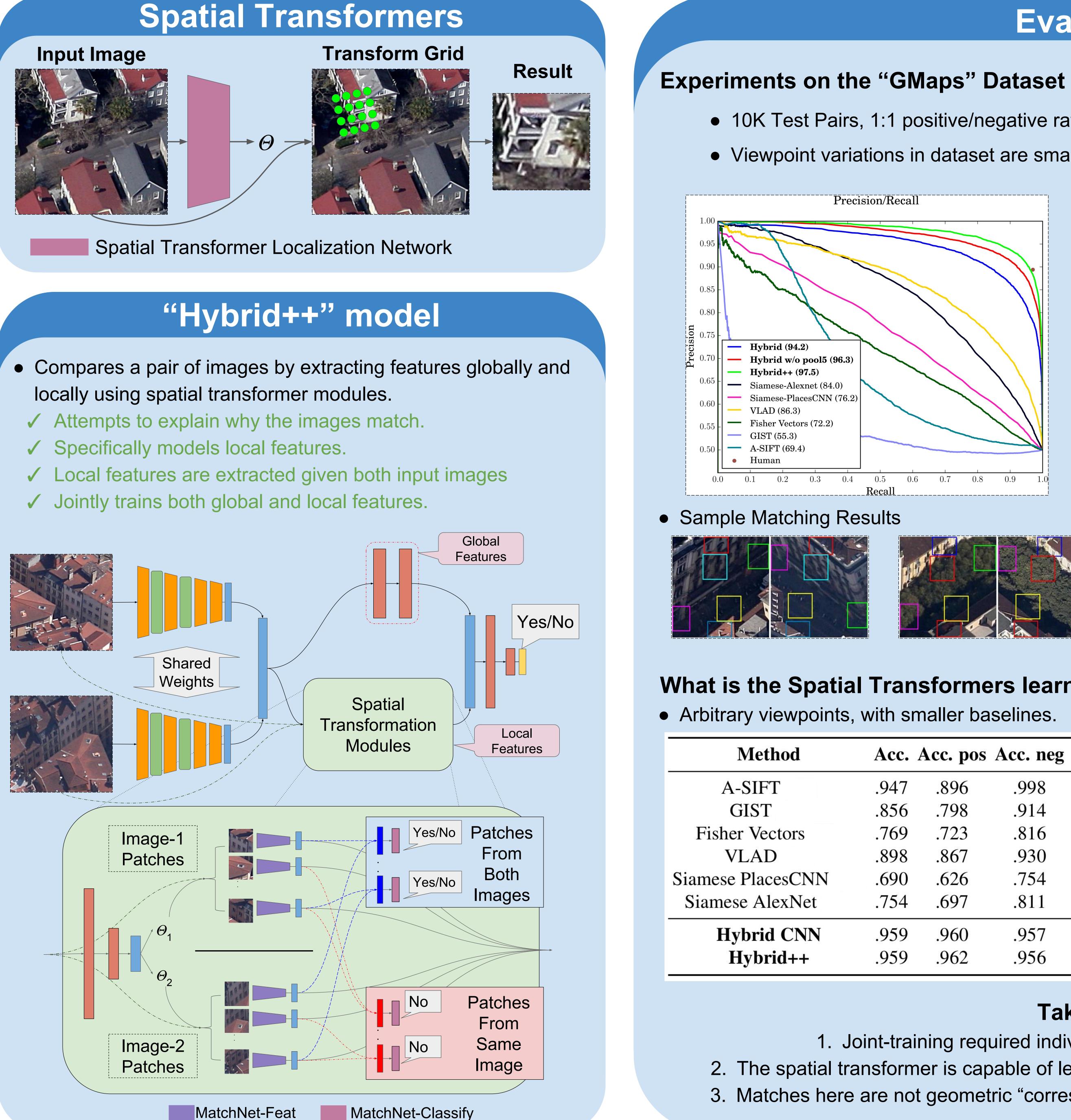
"Hybrid" Model

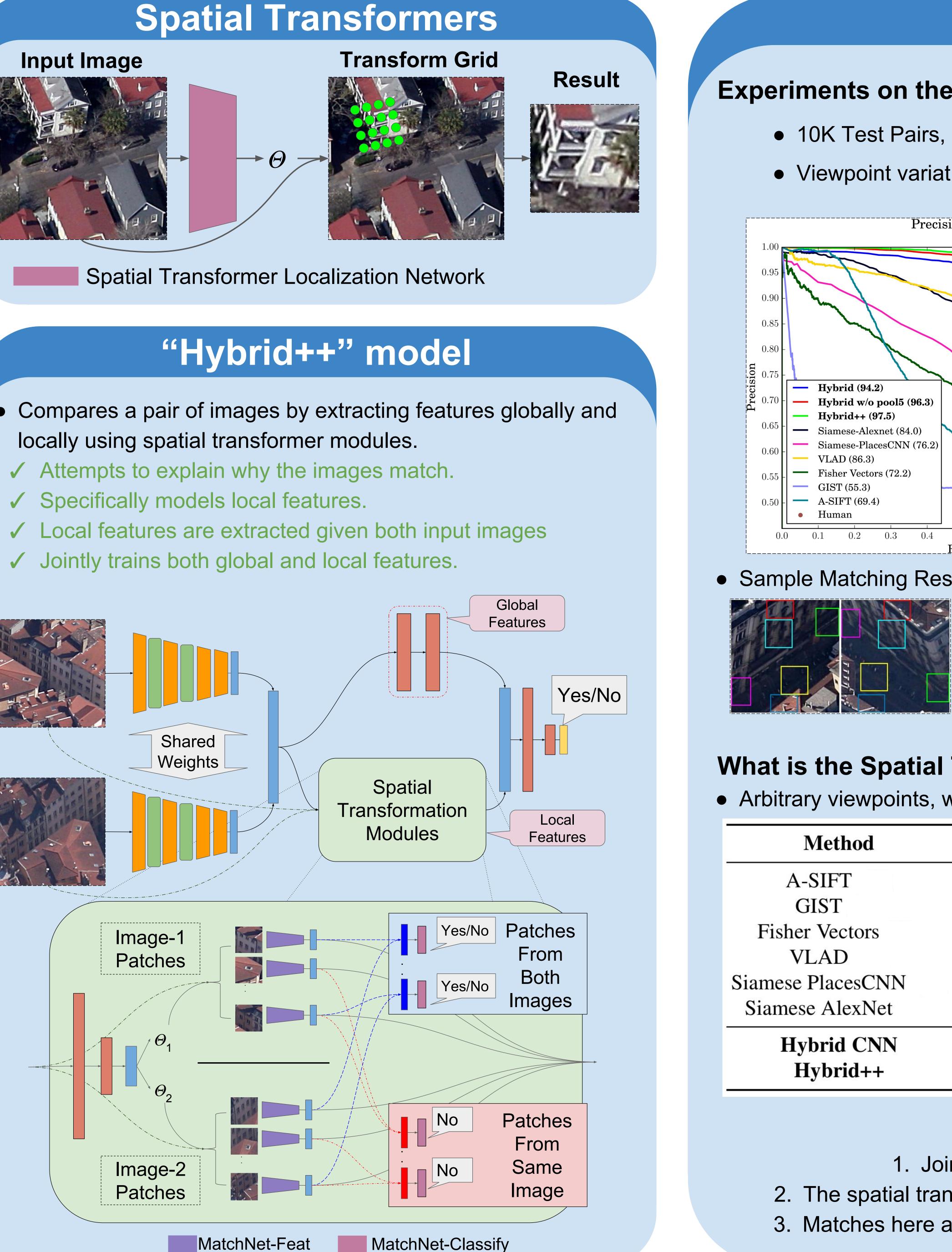
 Siamese network, with a fine-tuned AlexNet and a matching classifier.

✓ Allows both images to be considered jointly.

✓ Good classification results.

X Does not explain why the pair matches or not.





James Hays⁴

Pascal Fua³

Serge Belongie^{1,2}

Georgia College of Tech Computing

مدينة الملك عبدالعزيز للعلوم والتقنية KACST

ÉCOLE POLYTECHNIQUE

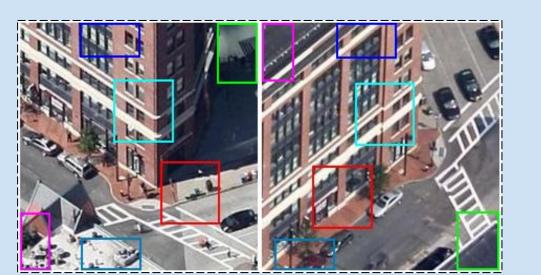
FÉDÉRALE DE LAUSANNE

Evaluation

• 10K Test Pairs, 1:1 positive/negative ratio.

• Viewpoint variations in dataset are small.

	Method	Acc.	Acc. pos	Acc. neg	AP
	Human*	.933	.894	.972	
	A-SIFT	.613	.353	.874	.694
	GIST	.549	.242	.821	.553
	Fisher Vectors	.659	.605	.713	.722
	VLAD	.786	.769	.803	.863
	Siamese PlacesCNN	.690	.626	.754	.762
	Siamese AlexNet	.754	.697	.811	.840
	Hybrid CNN	.881	.901	.861	.942
	Hybrid w/o pool5	.909	.928	.891	.963
0.8 0.9 1.0	Hybrid++	.926	.927	.925	.975
0.8 0.9 1.0	· ·				



What is the Spatial Transformers learning? Experiments on "Lausanne"

856 .798 .914 .937 769 .723 .816 .867 898 .867 .930 .965 690 .626 .754 .958 754 .697 .811 .968	cc.	Acc. pos	Acc. neg	AP
769 .723 .816 .867 898 .867 .930 .965 590 .626 .754 .958 754 .697 .811 .968	47	.896	.998	.968
898.867.930.965590.626.754.958754.697.811.968	56	.798	.914	.937
590.626.754.958754.697.811.968	69	.723	.816	.867
754 .697 .811 .968	98	.867	.930	.965
	90	.626	.754	.958
959 .960 .957 .992	54	.697	.811	.968
	59	.960	.957	.992
959 .962 .956 .992	59	.962	.956	.992

Takeaways

1. Joint-training required individual pre-training of network parts. 2. The spatial transformer is capable of learning varying viewpoint changes per the data. 3. Matches here are not geometric "correspondences", however, we are one step closer.