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e Matching ultra wide-baseline aerial images goes beyond
the reach of traditional tools such as SIFT+RANSAC.

Experiments on the “GMaps” Dataset

e 10K Test Pairs, 1:1 positive/negative ratio.

e \We approach it with deep networks in a classification e \iewpoint variations in dataset are small

framework, and obtain state of the art results.
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incorporating geometry increases performance. Recall

v/ Jointly trains both global and local features.
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3. We conduct a human study as a baseline.

Aerial datasets

" MatchNet-Feat

. MatchNet-Classify

3. Matches here are not geometric “correspondences”, however, we are one step closer.
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matching classifier. B B\ Spatial e Arbitrary viewpoints, with smaller baselines.
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DL e Vector ~ Patches Image 2. The spatial transformer is capable of learning varying viewpoint changes per the data.




